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longitudinal distance from the nozzle exit
coordinate perpendicular to x axis

height of the nozzle

U
width of the jet corresponding to —%
HUg
Reynolds number = v

mean velocity

maximum velocity at any station x
exit velocity

volume rate of flow at any station x
Qat x =0

frequency of applied oscillation
frequency from auto-correlation

pressure in the plenum chamber

Q-Qe
Qe

entrainment ratio =

thrust of the jet
thrust of the ejector

To + Te

thrust augmentation ratio = T
o

K, - defined in table 1
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ABSTRACT

A plane subsonic turbulent jet was excited by a special oscillating nozzle.
Its overall performance compares favorably with that of the vane excited jet
investigated earlier. The nozzle when installed in an ejector system yielded
a th;ust augmentation ratioﬁ of 1.6 at an excitation frequency of 20HZ. The
dynamics of the oscillating flow was examined in the light of the Korst

theory.




I. INTRODUCT ION

It is well known that a turbulent jet can be stimulated to entrain more
fluid by subjecting it to excitation 1=9,  This property of the jet has
innumerable practical applications, many of them yet to be exploited. For
example, in aeronautical engineering it could be utilized to enhance the
thrust of an ejector installed in a V/STOL aircraft.

It is observed that, while an axi-symmetric jet can easily be excited by
the application of axial or transverse disturbances or even acoustically, a
plane jet is found to respond only to an anti-symmetric perturbation :°,

Recent experiments carried out to excite a plane jet, by an oscillating thin
airfoil or vane located in the potential core region, were quite
successful“'s, and high rate of mixing, coupled with larger entrainment, were
achieved by this technique. When installed in an ejector, the thrust was more
than that produced by a steady jetlo.

Though the utility of the vane excitation method has been demonstrated on
a laboratory scale, its suitability for practical application to an aircraft
system is yet to be established. The drag of the airfoil or vane in its
oscillating mode and the structural instability of this thin vibrating member
in a hostile environment can pose severe operational problems.

To alleviate the above constraints, a novel oscillating mechanism with a

high efficiency nozzle was designed. The flow characteristics of this jet and

its performance in an ejector system form the main theme of this report.
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II. EXPERIMENTAL SET-UP

The novel feature of the jet used in this investigation is the method of
excitation. A converging nozzle was employed with its upper and lower
surfaces in thé exit region segmented for reciprocating action to impart
oscillations to the flow. The frequency of reciprocation could be varied from
0 to 35 HZ by controlling the speed of the motor which was connected to the
segments through a cam—gear mechanism (Fig. 1). The maximum throw of the tip
was 1.0 cm, When the nozzle was in the symmetric position with each lip
extended halfway, the width of the nozzle was 0.5 cm. at the exit independent
of the location of the lips. The length of the nozzle was 3.8 cm. A set of
honeycombs and fine mesh screens were installed in the plenum chamber of the
jet to damp out disturbances from upstream. Dry air was supplied to the
plenum chamber by a large rotary compressor through a dump tank and a pressure
regulating valve., The 5et assembly, along with the oscillating mechanism was
mounted on special low friction bearings constraining ihe movement of the
whole unit to the axial direction., Strain gauge mounted force sensing devices
were attached to the system for measuring the thrust of the jet.

The ejector was fabricated from sheet metal in the form of a rectangular
duct 9.5 cm. long and 4.0 cm. wide whose height could be varied from 7-47 cm.
in steps of 5 cm. (Fig. 2). Static pressure holes were provided at suitable
intervals on the bottom wall of the duct. A short 5.2° (half angle) diffuser
was attached to the duct in one of the experiments. Thrust generated by the
ejector was measured independently by a strain gauge force recording device,
to an accuracy of * 2 %Z.

Mean velocity profiles were méasured across the width of the jet at its

midspan with a fine 2mm diameter pitot-static tube coupled to a differential
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pressure transducer. A small 1.0 cm diameter disc-type static pressure probe
incorporating a Kulite pressure transducer was fabricated for measuring mean
static pressure as well as part of the fluctuating component (Fig .3). The

turbulence signals from this probe were processed by a Seicor-SAl-42 real time

correlator,
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ITII. EXPERIMENTAL RESULTS AND DISCUSSIONS

All the experiments were carried out with a plenum chamber pressure of
1.137 atmospheres and the exit velocity (Ug) was 160 meters/sec. An
oscillating frequency (fg) of 20 HZ was used throughout the investigation
except in one case. The Reynolds number R, = _%T was‘4.8 x 10* for the
steady jet.

The mean velocity profiles were measured at 9, 18, 27, 36 and 45 nozzle
widths downstream of the exit for the steady as well as for the excited jet
(Figs. 4-8). In both cases the width (b) of the jet (b) increased linearly

with x (Fig. 9) following the relations

b/H = 0.22 (x/H + 0.9) - steady jet (1)
and
b/H = 0.54 (x/H - 9.26) = oscillating jet (2)

The mean velocity along the center line (Uy) decayed faster for the excited

jet (Fig.l10). The decay rate was found to be

(Up/Ug) ™% = 0.10 (x/H + 1.5) - steady jet (3
an’
(Up/Ue)~%4 = 0.213 (x/H - 0.706) - oscillating jet (4)

The flow entrained by the jet was estimated by integrating the mean
velocity profiles. For the steady case the entrainment ratio (c) increased
linearly with x beyond x/H = 20 (Fig. ll); the variation is given by

€ = 0.8 + 0.73 (x/H) -(5)

similarly for the oscillating jet is (Fig. 10)

€= 1,15+ 0,92 (x/H) for x/H 20 -(6)
The thrust of the jet and the ejector were measured independently. For a

plenum pressure of 1.137 atomsphere the jet alone produced an axial force of




29.2 Newtons both for the steady and the excited states. Ejector

thrust was frequency dependent up to f, = 14 HZ beyond which its value was
essentially constant (Fig. 12). Based on this observation, the remaining
investigations were carried out at 20 HZ to eliminate frequency dependence in
some of the results,

The influence of the ejector height was examined by varying S/H from l4
to 88, Thrust increased initially up to S/H of 40 for the steady jet followed
by decrease in ; (Fig. 13). A somewhat similar trend was observed with the
oscillating jet with the maximum at S/H = 45. The upper values of , for the
steady and oscillating cases were 1.5 and 1.6, respectively. With the
diffuser attached to the duct (S/H = 48), the thrust of the ejector increased
by nearly six percent for both steady and oscillating conditions.

The mean velocity profiles at x = 46 cm were surveyed in the parallel
duct with x/H of 44, without the diffuser (Fig. 14). Excitation did increase
mixing but it was only partial, as could be observed from the gradients in the
velocity profiles., The entrainment ratio (c) for the case of the steady jet
as estimated from the above velocity distribution was 4.6, With the excited

jet = was 6.35.




IV. DISCUSSIONS

The decay of mean velocity along x is less for this jet in the steady
state when compared with others (Table 1) and the value of k| is closer to the
case with very thin laminar boundary layers at the nozzle exit :®. A similar
situation could be anticipated in the present experiment as the flow in the
converging nozzle is subjected to severe acceleration. The growth of the jet
is the same as for the others. It is interesting to observe that in general
the angle of spread of a plane turbulent jet (k) is not highly influenced by
the initial conditions except by a shift in the origin. The average value of
ko is 0,22 * .02,

The overall performance of the reciprocating nozzle is comparable with
that of the oscillating vane system. There is fair agreement in the growth of

the jet as well as in the entrainment (Figs. 9 & l1) when the comparison is

made with the results of Platzer et al® for the same Reynolds number and
oscillating frequency (f,) with the vane at its highest pitching mode. The
data from other experiments could not be made use of since the test conditions
were different.

The fluid dynamics of a steady plane turbulent jet is yet to be fully
understood. Excitation adds further complexity to the problem. It has been
hypothesized that even a steady jet experiences an inherent flapping motion, a
behavior inferred from space-time as well as from autocorrelation of
fluctuating velocity components. The period of correlation (t) is found to
increase with x. Cervantes and Goldschmidt !2 observed that there exists a
Strouhal number éii , Where fx = 1/t , the value of which is a constant equal

m
to 0,11 and independent of x. Similar results were obtained in the present
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investigation (Fig. 15), using the auto correlation measurements made with the

disc pressure probe. The period corresponding to the second zero in the auto-

correlation (Fig. 15) was considered for evalutating f,. E%B was found to
m

be constant equal to 0.,10%,02 in the region x/4 = 6 to 60, This value was
independent of Reynolds number in the range of 25000 to 93000, the upper and
the lower limit of the test facility (Fig. 16). Since the signals from the

pressure transducer wWere not strong enough at large distances from the nozzle

X
for data processing, the above measurements were restricted to i of 60,

The influence of the imposed periodic oscillations on the already
existing flapping motion of a steady jet is still a matter for speculation.
According to Korst!“, a favorable coupling between the natural and applied
oscillations is required for the amplification of the jet and this could
occur at any location along the axis., Based on this concept, Korst defined a
pair of Strouhal numbers STy for the steady jet and ST, for the excited one,
defined by

STy = f£4H/Up and ST = fgH/Up
with

Fyb/Uy = 0.11 and b/H = 0,083 (x/H + 6.62) - Ref, 12

STy = 1.325 (x/H + 6.62)

When ST, and STy are nearly equal there should be an amplification
resulting in a large spread and entrainment of the jet. Since fy is estimated
from statistical considerations this phenomenon might not be spontaneous,

The above hypothesis of Korst is examined using the available
experimental results on plane excited jets (Figs. 17 & 18). For the

reciprocating nozzle ST,/STy is less than unity by an order of magnitude. But

T yvy
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for the experiments of Badri Narayanan and Raghu? ST, and STy are almost equal
- near the exit of the nozzle except for fo = 10 HZ. Beyond x/H of 40 there is
n reduction in entrainment where the difference between the two Strouhal numbers
&f; is large. This trend is in agreement with Korst's hypothesis. The results of

Lai and Simmoqs6 indicate agreement between ST, and STy only around x/H of
60, for f, of 20 and 30 HZ.

The data of Bernal and Sarohial® are found to be insufficient for this
analysis. However, based on an approximate evaluation of the velocity decay
(Fig. 18), STy and ST were calculated. Both Strouhal numbers were nearly
equal at x/H of 17 for an excitation frequency of 500 HZ, the frequency at
which the amplification of the jet was spontaneous,

The above discussions lead to the speculation that there might be more
than one mechanism involved in the excitation of a plane jet. Resonance
amplification is noticeable when the amplitude of imposed oscillations is
small. Acoustic disturbances fall under this category13vl7. The response is
somewhat localized in the region of perturbation, a trend observable in the
experiments of Badri Narayanan and Raghu® (Fig. 17). In this process the

amplitude of the input disturbance does not affect the overall results. Only

-ﬁ: the frequency is of importance.

?%7 For larger disturbances the resonance mode will be present, however its

b

3

E’f role will be secondary, when compared to the large periodic eddies generated

N

s by the imposed oscillations. These large scale motions which will be periodic

L..: ‘

jji in the beginning will break down into smaller ones as they are convected

@

. downstream. In this process the transport of mass and momentum will be

aa

EX{ significantly modified from that of a steady jet. It is obvious that the

E:' amplitude, as well as the frequency of the imposed disturbance, have to be

o considered in determining the overall flow characteristics of the jet. The
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next phase of the present research activity is to investigate the fluid

mechanical details of this flow w.th special emphasis on the structure of

turbulence and its role in the mixing process.
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TABLE I,

INVESTIGATOR K, c, Ky Cy
1. PRESENT CASE 0.10 1.50 0.22 0.9
2. PLATZER et all 0.325 -0.46
(Ref. 8)
3. HUSSAIN & CLARK 0.01132 =2.1 0.24 1.9 thin laminar B. L.
(Ref. 16) 001739 -0.63 0023 -2.16 thin turbulent Bo L.
4, BADRI NARAYANAN 0.485 0.412 0.212 1.89
and RAGHU
(Ref. 9)
5. LAI and SIMMONS 0.171 0.226 0.26
(Ref. 6)
6. CHAMBERS and 00136 —1304 00188 -10-4
GOLDSCHMIDT
(Ref. 13)
7. BERNAL and 0.216 ~17.56 0.179 2.49
SAROHIA
(Ref. 15)

(Un/Uo)~* = Ky (X/H + C])

b/H = Ky(X/H + Cp)
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